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Abstract

New technologies such as DNA combing have led to the availability of large quanti-
ties of data that describe the state of DNA while undergoing replication in S phase.
In this chapter, we describe methods used to extract various parameters of replica-
tion — fork velocity, origin initiation rate, fork density, numbers of potential and
utilized origins — from such data. We first present a version of the technique that
applies to “ideal” data. We then show how to deal with a number of real-world
complications, such as the asynchrony of starting times of a population of cells, the
finite length of fragments used in the analysis, and the finite amount of DNA in a
chromosome.
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1 Introduction

New techniques, DNA combing in particular [1], have led to the possibility of
obtaining large quantities of data on the progress of DNA replication. Over the
past few years, such experiments have been conducted on a number of different
organisms, including Xenopus cell-free embryo extracts [2], the Epstein-Barr
virus [3], budding yeast [1], Chinese Hamster cells [5], fission yeast [0], and
human cancer cells [7]. These experiments have led to important insights into
the mechanisms of DNA replication, such as the role that the origin-initiation
rate plays in the successful completion of replication [,9,10], the role of chro-
matin looping [1 1], and a much more detailed appreciation of the complicated
interplay between origin initiation and fork progression [12].

Molecular combing experiments generate large quantities of data that typically
take the form of images of fragments of DNA, with various domains labeled. In
the simplest example, described in this chapter, the labeled regions correlate
with replicated or non-replicated domains, allowing one to have, in effect, a
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“snapshot” of the state of the DNA at some time point during replication. The
goal of the analytical methods presented here is to extract from such data pa-
rameters that are relevant to DNA replication. These parameters include the
replication fork velocity, origin-initiation rate, fork density, and numbers of po-
tential and initiated origins. The parameters are described by fitting statistics
of the combing data — for example, the average size of replicated or non-
replicated domains — to a kinetic model of DNA replication. Here, a “kinetic
model” is one that seeks to describe the progress of replication in a way that is
independent of the underlying biological mechanisms. For example, a key pa-
rameter in such models is the time-dependent rate of initiation of origins, I(?).
This is a kinetic parameter in the sense that one can describe the number of
origin initiations independently of the mechanism that determines these num-
bers. In the work on Xenopus cell-free embryo extracts, I(t) was found using
a kinetic model to increase throughout S phase. The inferred measurements of
I(t) then stimulated several hypotheses about possible underlying biological
mechanisms to account for this increase [13,14,15]. Although one might view
the relative lack of biological detail in kinetic models as a limitation, it can
also be an advantage, in that one can separate the description of the progress
of DNA replication from any explanation of mechanisms.

Below, we describe how to use kinetic models to extract from experimental
data various replication parameters such as the velocity of replication forks,
the numbers of potential and activated origins, and the rate of initiation of
origins. In the Materials Section, we outline the data requirements for the
analysis. In the Methods Section, we describe the structure of the basic model
and give an analysis that is appropriate to “ideal” data. Then, in the Notes
Section, we describe various complications that are likely to be present in
typical data and give methods for adapting the basic analysis to deal with the
complications.

2 Materials

The input data for kinetic modeling have been data derived from molecular
combing experiments. These data are in the form of fragments of fluorescently
labeled DNA, imaged by epifluorescence microscopy, and recorded digitally.
In the following, we consider the simplest example of a combing experiment,
where at a given time point during the replication cycle (i.e., at time ¢ after
the start of S phase), a nucleotide analog such as bromodeoxyuridine (BrdU,
an analog of thymidine) is introduced and incorporated into the replicating
DNA. After replication is completed, the DNA is extracted, combed onto a
substrate, and the BrdU is labeled using an anti-BrdU antibody labeled with
a fluorescent dye such as the fluorescein-based FITC. In addition, the entire
DNA fragment is labeled with a non-specific label with an anti-guanosine



antibody attached to a different-color fluorophore, in order to visualize the
entire fragment. Both labels are then imaged, allowing one to infer a kind
of snapshot of the replication state of the DNA at the time that the BrdU
was added (Fig. 1). The experiment is then repeated for different time points,
giving information about the replication state as the cell progresses through
S phase. Further details on molecular combing of DNA for replication studies
are given in other chapters in this volume.

The images of combed fragments are analyzed, either manually via an image-
processing program or by specialized software such as that available from
Genomic Vision (www.genomicvision.com). For the former strategy, the open-
source ImageJ (rsb.info.nih.gov/ij) is a common choice. One uses a measuring
tool to determine the lengths of labeled domains and DNA fragments, using
one’s eye to determine the domain boundaries. The resulting data set has
one record per analyzed fragment. Figure 1 shows a schematic of a typical
fragment. The thick black lines represent domains of replicated DNA (“eyes”);
the thin ones domains that had not yet replicated at the time the labels
were introduced to the sample (“holes”). A final quantity of interest is the
“eye-to-eye” distance, defined to be the distance between the centers of two
neighboring eyes.

The initial task, then, is to compile a list, for each fragment, of data ob-
tained via image analysis. This may be done either with a spreadsheet pro-
gram such as Excel (Microsoft, Inc.), or an open-source equivalent such as
Calc (www.openoffice.org). Alternatively, a more-sophisticated scientific data-
analysis tool such as Igor-Pro (WaveMetrics, Inc.; used in our own work) or
Matlab (The MathWorks, Inc.) may be used. The latter programs have the
advantage of being able to carry out Monte Carlo simulations of DNA replica-
tion, and one can use the resulting simulation data as substitutes for analytical
functions when fitting to experimental data. This can be important in that
deriving analytical expressions for realistic models may be hard. However, at
least for the simpler versions of the analysis discussed here, a spreadsheet will
suffice.

Table 1, below, illustrates a typical sample format for data corresponding to
the image in Fig. 1. As we discuss below, the quality of the raw data influ-
ences both the reliability of the inferred replication parameters and the com-
putational effort required to extract those parameters. The most important
considerations are as follows:

(1) The cell populations should be well-synchronized. In other words, if data
are taken from a population of cells, those cells should all have started
replication at approximately identical times. In particular, the standard
deviation of the starting times should be much less than the duration of
S phase. (See Note 4.1.)
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1. Top: Epifluorescence image of a combed fragment of DNA labeled to show

non-replicated areas. Non-replicated segments are visualized using anti-BrdU an-
tibodies. The length and continuity of the DNA fragment is determined by label-
ing with anti-guanosine antibodies (image not shown). Bottom: Schematic diagram
corresponding to the labeled fragment of DNA, resulting from a molecular-combing
experiment. Eye, hole, and eye-to-eye domain sizes are indicated. Combing image
courtesy John Herrick, Genomic Vision.

(2)

The combed fragments of DNA should be as large as possible. As we
discuss below in Note 4.2 the finite length of combed DNA fragments
can bias the measurement of average domain sizes downwards. Since we
use measurements of average eye and hole sizes in the determination
of origin initiation rates, etc., their estimates can also be biased. The
important measure of fragment length is not an absolute length but the
average number of domains (eyes, holes) per fragment, Ngomains- Near
the beginning of S phase, the eyes are small and holes are large, and the
reverse is true at the end of S phase. In both cases, it is clear that a
typical fragment will have few domains. Thus, Nyomains Will be largest in
the middle of S phase. If Ngomains > 10, then finite-size effects are small.
Good optical resolution and good labeling efficiency are also important.
Here, the goal is to minimize the number of mistakes made in the domain
assignment. These can arise when a very small domain (say an eye) is
not well-resolved, leading one to confuse a hole-eye-hole sequence with a
single larger hole. The reverse scenario is that non-specific labeling causes
one to misinterpret a large hole with a false hole-eye-hole sequence. A
reasonable criterion is to limit such mis-assignments to no more than 1%
of the total amount of data gathered.

Finally, the total amount of data is also important. As a rule of thumb,
one should have data from DNA fragments whose total length exceeds
that of the original genome. However, multiple coverage is better.



fragment label 13

fragment length 38
number of domains 4
length of domain 0

“ 7 18

“ 7 15

“ K 5

end of record code 9999

Table 1

Sample data obtained from analysis of an image of a combed DNA fragment. The
type of each domain alternates between hole and eye. By convention, the first domain
is a hole. Since the above fragment begins with an edge eye domain, there is a
fictitious zero-length entry and hence only 3 actual domains. All lengths are given
in kilobases (kb). The 9999 entry is a redundant marker to aid in the reading of the
data file.

3 Methods

3.1 Kinetic Modeling Approach

In replication experiments, the quantities of direct interest include the repli-
cation fork velocity v, the rate of initiation of origins I, the fork density n;
— all of which can depend on time during S phase and location along the
genome. In principle, if one were able to image the replication process dynam-
ically, such quantities could be extracted in a straightforward manner. But
given that data from actual experiments have been limited to static snapshots
of the replication state of DNA fragments, a more sophisticated approach is
needed. To understand why a statistical approach is necessary, consider again
the image and sketch of Fig. 1. There, several replicated domains (eyes) are
indicated. Can we conclude that there was a single origin at the center of
each eye? Unfortunately, no: while it is possible that an eye is the result of a
single initiation event, it could also result from two or more initiations that
subsequently merged. Thus, it is not straightforward to use the number of eye
domains at different times to infer the rate of origin initiation. One might try
an ad hoc approach, where eyes below a certain small size are deemed to be
the result of a single initiation. One study, for example, used data from eyes
with size between 3 and 8 kb [2]. (The lower limit comes from the need to dis-
tinguish between a domain and a non-specifically bound fluorophore.) While
such an approach can give some information on the time-dependent initiation



rate I(t), one is throwing away most of the data and thus increasing statistical
errors. In addition, biases will arise if the small domains examined actually do
correspond to two or more initiation sites or if domains larger than the cutoff
have just a single origin.

The kinetic-modeling approach presented here skirts these difficulties. Because
the model is statistical, it can incorporate all the acquired data. In effect,
there is no need to decide whether a given domain has one or more origins.
The quantities of interest become statistics of domain sizes — for example,
the average eye, hole, and eye-to-eye sizes. (Higher-moment statistics such as
the standard deviation can give more information but have not so far been
exploited, as their accurate estimation would require more data than have
typically been available.)

The models that we use have been adapted from earlier work dating from the
1930s on crystallization kinetics [10,17,18]. We emphasize that the analogy is
formal and mathematical — not physical or biological. Rather, all that is used
are three fundamental aspects of DNA replication: initiation at multiple sites
along the genome, outward progression of replication forks, and coalescence
of forks that meet. (For the latter, no detailed mechanism is necessary. The
assumption essentially is equivalent to the observation that DNA is replicated
only once per cell cycle [19].)

In this section, we assume “good” data in that the various desiderata in the
Methods Section, above, have been met. In fact, they typically have not been
met in experiments conducted to date, and in the Notes Section, below, we
explain how to deal with various non-ideal situations encountered in practice.
The analysis given below, however, is useful both for its relative simplicity
and because an experiment giving data that are good enough to be analyzed
as done below could in principle be carried out. Note that we only cite the
main results; for derivations, see [20] and references therein.

Two principle results are an expression for the domain density ny = Ny/L,
with Ny the number of domains in a genome of length L,

na(t) = g(t)e 2o s (1)

and an expression for the overall fraction of the genome that has replicated at
time ¢,
f(t) =1 e hoter 2)

where g(t) = 2 I(¥')dt', with I(t) the initiation rate. A glossary of technical
symbols is given in Table 2. The domain density is a bell-shaped curve peaking



symbol definition

f replication fraction (0 < f < 1)

I initiations / length of unreplicated DNA / time
g(t) integral of I from time 0 to time ¢

v replication fork velocity (kb/min)

Niomains number of domains / DNA fragment of length L

Ndomains average number of domains / length of DNA
No number of initiated origins / length of DNA
(; average length of replicated domains (“eyes”)
0y, average length of non-replicated domains (“holes”)
lini average distance between centers of adjacent replicated domains (“eye-to-eye”)
Linterior total length of interior domains
Legge total length of edge domains
Loversized total length of oversized domains
Linterior biased domain-length estimator using only interior domains

Lunbiased unbiased domain-length estimator from interior, edge, and oversized domains

t time elapsed since start of replication
T laboratory time
T times at which replication data are collected
o(7) distribution of starting times of DNA replication for different cells
o(f, ) distribution of replication-fraction values of DNA fragments collected at time 7;
Pend(t) distribution of replication times for a finite genome
t* typical time to replicate completely a genome (mode of end-time distribution)
I6] width (in time) of end-time distribution (o standard deviation)

Table 2
Glossary of technical symbols.

near the middle of S phase, while f(t) is sigmoidal, going from 0 to 1. It is easy
to see why the domain density is bell-shaped: at the beginning of S phase, there
is a small number of widely separated replicated domains (eyes) and hence a
low number of domains/length. At the end of S phase, there are a few widely
separated non-replicated domains (holes) and, again, a low domain density.
(There is always an equal number of eyes and holes.) In the middle of S phase,
there is a relatively large number of medium sized eyes and holes.

As a simple example, if origins initiate at a constant rate, so that I(t) = I,



then g(t) = Iyt and Egs. 1 and 2 imply

na(t) = Iote ™" 5 f(t) =1—e " (3)

Note that there is a typical time ¢, associated with the replication process that
sets the scale for replication times. In this example, it is ¢ty = 1/v/Iyv, and
to progress from 10 to 90% replication requires a time of ~ 1.2ty. (The exact
numerical factor depends on the precise form of I(t) as well as the parameters
v and Ij.)

While chromatin and its associated DNA are embedded in a three-dimensional
space, they are one-dimensional objects, and that fact imposes constraints on
the domain topology. As a result, hole and eye domains must alternate and,
as a consequence, one can show that

Toos(6) = Tu(0) + Ta(t) = — (4)
f) =t (5)

In Egs. 4 and 5, the overbars denote averages taken over the set of domain
sizes (eye or hole). The first part of Eq. 4 states that the average distance
between the centers of two neighboring eyes equals the average size of an eye
plus the average size of a hole. The second part, equivalent to ng = 1/f;;,
states that the domain density is the reciprocal of the average eye-to-eye dis-
tance. Equation 5 states that the fraction replicated is the average eye size
divided by the average eye plus average hole sizes. Thus, there are only two
independent quantities among f(t), £;(t), {x(t), £i2i(t), ng(t). Then Eqgs. 1, 2, 4,
and 5 together imply

N 0
- 1

fh(t):@ (7)
7 o L 2v ;g(t/)dt’

laslt) = ok ) . (8)

Finally, the number of initiated origins per unit length along the genome, n,,
can be written as

no= [ IO~ f(t))dt . (9)



3.2

Extraction of Replication Parameters using the Kinetic Approach

In the Materials section, we outlined the collection of data under “ideal” cir-
cumstances — many long fragments of DNA with numerous domains, highly
efficient and specific labeling, and all taken from a population of cells whose
cycles are well synchronized. Under these admittedly optimistic circumstances,
one can measure the fork density n4(t), the replication fraction f(t), and av-
erages of domain sizes. Depending on the extent of one’s a priori knowledge
about what () and v(t) should be and depending on the numbers and types
of experiments that are possible, there are several ways to proceed. One basic
issue is whether one has a priori knowledge about the functional form of the
genome-averaged initiation rate I(t) and/or that of the fork velocity v(t). We
outline the main possibilities below.

(1)

If the functional form is known (but not specific parameters), then one
may do a least-squares curve fit to extract the unknown parameters. For
example, one might suspect that I(t) = I,t", with I,, a pre-factor and n
an exponent and that v is a constant. Then one would do a curve fit to
extract unknown parameters. Some programs, such as Igor Pro, support
global curve fits where a single set of parameters (e.g., I,,, n, and v) are
simultaneously fit to multiple data sets, for example to Eqgs. 1 and 7.
(Recall that only two among Eqs. 1, 2, 6, 7 and 8 are independent.) If
global fitting is not possible, then we have found empirically that the
best results to a single fit are given by fitting to the domain density, ng
(Eq. 1).

If the functional forms for I(¢) and v(¢) are unknown, then one may try to
estimate these from the data. Using the results summarized in Eqgs. 2-8,
one can directly extract the initiation rate and fork velocity:

10=5 (7im) )
o(t) = (27;@)) ‘CZ | (1)

The latter equation can be understood as equating the growth of total
domain size per length, 2ung, to the rate of increase in replication fraction.
One delicate point is that both these relations involve the calculation of
a numerical derivative, an operation that tends to increase the effects of
noise. The effects are minimized by having more data, particularly having
more time points. In addition, we have found that Eq. 11 is vulnerable to
systematic error at early and late replication times (e.g., before f = 0.2
and after f = 0.8. Having at least 5 time points between these two
f values is essential. (Here, the issue is not only the evaluation of the
numerical derivative but also that Eq. 11 assumes that the time interval




used to evaluate the derivative is short enough that no initiations or
coalescences occur.)

We note, also, that the fitting and direct-inversion procedures may be
combined. Starting with direct-inversion, one gets an idea of the form of
either the initiation rate or fork velocity. One then guesses a functional
form and uses that form as an input to the fitting procedure.

(3) Finally, it is also possible to do independent experiments to extract the
fork velocity. These would typically use a pulse-chase protocol where the
nucleotide analog is added for a short time and then flushed from the
experimental chamber (for example, [12]).

We illustrate the parameter-extraction procedure using in silico simulation
data. The replication process, combing, and domain-statistics compilation are
all included in the simulation. For this case, the initiation rate was assumed to
increase as a power law, I o< t>5, where the exponent (and prefactor) are cho-
sen to match the values extracted from experiments on cell-free Xenopus em-
bryo extracts [$]. The fork velocity was assumed to be constant (0.6 kb/min).
The results are shown in Fig. 2(a)—(c), where part (a) shows the extracted
averages /;(t) and £, (t), part (b) shows the replication fraction f(¢), and part
(c) shows the extracted I(t). Statistical errors are evaluated directly from re-
peated simulations; where they are not visible, they are smaller than the graph
marker. At the end of S phase, errors are large because there are few domains.
The solid lines are calculated from the values used to simulate the data; in
particular, they are not fits. Thus, we conclude that it is possible to extract
accurate estimates of replication parameters in this case.

It is worth pointing out a few details. We are essentially following the direct-
inversion procedure outlined above for I(¢) and the fitting procedure (assuming
v is constant) for the fork velocity. Figure 2(a) is thus compiled directly from
experimental data. One simply measures hole and eye sizes and computes their
average. (In Note 4.2, we discuss some subtleties in estimating the mean.) The
error bar — present but not visible in the figure when smaller than the symbol
size — is the standard error of the mean (¢/v/N, where ¢ is the standard
deviation of the distribution and NN is the number of domains measured at a
particular time point. Figure 2(b) is also calculated directly from the data.
At each time point, the total length of all replicated domains is summed and
then divided by the total length of all measured DNA fragments. Figure 2(c) is
calculated using Eq. 10. The larger amount of statistical scatter in I(¢) arises
from the numerical differentiation of £, (t)~!, which tends to amplify noise.

In all the sections of Fig. 2, solid lines are calculated from the parameters
used to generate the simulation. They show the good agreement between the
extracted quantities and the “true” values. In this case, the solid lines are also
indistinguishable from the results of least-squares fits to the data.
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4 Notes

In the above discussion, our “ideal” data allowed us to successfully extract
replication parameters via a simple analysis. While such data may well be
obtained in the future, all experiments to date have fallen short of the criteria
listed in the Materials Section. Here, we discuss how to analyze and extract
parameters from data taken under the not-so-ideal conditions that, up until
now, have been present. As we discuss, the significant complications have been
the asynchrony of starting times for different cells and the finite length of
DNA fragments that result from the combing process, and we focus on those
problems. We also briefly discuss the implications of the finite (but large)
length of the genome under study.

4.1 Asynchrony

Perhaps the most important limitation of experiments has been the lack of
synchrony in the cell cycles of cells whose DNA was extracted for replication
studies. For example, in experiments on Xenopus cell-free extracts, the starting
time distribution had a standard deviation of 6 min, while the nominal S phase
duration (10-90% replication) was 14 min. [8]. Lack of synchrony complicates
the data analysis because the data from a single time point comes from a
variety of actual starting times. (The asynchrony problem has one bright side:
even with a small number of time points in the experiment, one probes a wide
range of starting times.)

To deal with asynchrony, the basic trick is to relate all measured quantities to
the replication fraction f, rather than to time [21]. In other words, one replaces
the “laboratory clock” t with the “replication clock” f. Such a procedure is
possible even when the cell population is completely asynchronous. Then, in a
second step, whose success depends on the degree of synchrony in the starting
times of S phase for the cell population under study, one converts from f to ¢.

The procedure begins by grouping each DNA fragment by its replication frac-
tion f instead of by its time replicated. Having grouped fragments according
to their f values, one then compiles statistics (e.g. average domain size) over
each “f-bin.” The amount of available data will determine the bin width Af.
In [8], for example, that width was a uniform 2%. In Fig. 2(d), we pooled the
data from 13 groups of 100, which gave 13 f-bins of variable width. Either
way is acceptable. In general, one should take bins to be as wide as possible,
to minimize statistical errors, without averaging over significant features of
the f dependence. It is useful to write a program that allows one to explore
the effects of different choices of bin width. In any case, having settled on a
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choice of bin widths, one estimates Z;(f), x(f), and Li(f).

Once the data have been sorted by their f values, one can extract the initiation
frequency I as a function of f, using expressions analogous to Eqs. 10-11, with
results shown in Figs. 2(e,f):

1) (1 \d 1
% @»(f)) AR (12)
df’

(f |
/ Z@Qi
0

where /;5; and ¢, are functions of f. In other words, even for completely
unsynchronized data, we can find I(f)/2v vs. 2vt(f) from the data. At first
glance, this seems to be too good to be true — up to a scale factor, one can
find the form of the initiation function vs. time without any synchrony at all
— but remember that what is obtained is the product vt(f) (a length, which
is what one measures), or f(vt) if one inverts. To pass from f(vt) to f(t) and
hence from I(f) to I(t) requires information that is based on the laboratory
clock and not just the replication clock. This information could be obtained
by making an independent measurement of the fork velocity v, as discussed
previously. It is also worth pointing out that in many cases, knowing I(f) is
as useful as knowing I(¢), and thus one can gain useful information even in
the absence of synchronization and without doing further experiments.

20t(f)

: (13)

If it is important to state results in terms of the laboratory time 7 and if a
direct and independent measurement of v is not possible, then it is still possible
to extract both v and an estimate of the distribution of replication starting
times (for the different cells in the population used in experiments). One starts
by constructing estimates of probability density functions (PDFs) p(f, ;) by
making histograms that count the numbers of DNA fragments between f and
f 4+ Af that were collected at time point 7; and then normalizing by the
total number of fragments collected. In the above discussion, one would group
together all fragments between f and f + Af, regardless of time point 7;, on
the grounds that we use the f estimate of each fragment as a measure of the
time at which replication started in the particular cell the fragment came from.
One can then relate the set of PDF's to an unknown starting time distribution
¢(7), which gives the proportion of cells that start replication between times
7and 7+ AT:

df

ot =omx (4 (1)

Here, one equates p(f, 7;)df with ¢(7)dr. In words, we observe a DNA fragment
of replication fraction f at time point 7;. Because we know the relation f(t)
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with ¢ the relative time elapsed since the start of replication, we can infer
that this fragment came from a cell that started replicating a time ¢ in the
past, i.e., at laboratory time 7 = 7; — t. A bin of width A f contains a fraction
p(f, 1) Af of the fragments that is numerically equal to ¢(7)A7, with a width
AT = (df /dt)"'Af, where 7 = 7; — t. (Note that there are three times under
discussion: t is an intrinsic clock that measures replication progress relative
to the start of replication; 7 is the laboratory clock; and the 7; are particular
laboratory times at which measurements are made.) We can also view Eq. 14
as a change of variables in probability distributions, from f to 7.

To return to our task of determining the velocity, we need to determine the
function ¢(7) along with the unknown velocity. It may be possible to estimate
independently ¢(7), for example by labeling newly replicated DNA [22]. If
such estimates are not available, then v and ¢(7) may be determined from
the p(f,7;) by a global least-squares fit. Results are shown in Fig. 2(gh).
Alternatively, if the starting-time distribution can reasonably be approximated
as Gaussian (as it could in [8]), then all that is required is an estimate of its
mean and standard deviation.

Note that the uncertainty in ¢(7) values can be estimated by transforming
uncertainty estimates for p(f, 7;) values. The standard way to estimate uncer-
tainties for histogram bins is to use only bins with 5 or more instances in the
bin and then to estimate the standard deviation as /N (f, 7;), where N(f, ;)
is the number of DNA fragments recorded in the bin between f and f + Af
at time 7; [23]. If estimates describing the shape of ¢(7) are not available,
they can be determined simultaneously with v via the above procedure. Given
a candidate value for v, the derivative df /dt can be estimated, for example,
from the previously determined vt(f). Of course, determining more parameters
from the data will increase the uncertainty of the resulting estimates.

One final subtlety is that fragments with f = 0 or 1 are problematic. For
example, we cannot infer a unique starting time to an f = 1 fragment, since
a cell will stay at f = 1 for a long period after finishing replication. We thus
exclude these fragments from the analysis.

4.2 Finite Fragment Sizes

The second potential complication arises from the finite size of DNA frag-
ments. The first generation of replication combing experiments (e.g. [2]) gave
DNA fragments averaging about 200 kb in length. The average fragment length
is determined by factors such as the fluid-flow shear associated with molecular
combing, with the largest fragments exceeding 1 Mb [24]. As mentioned in the
Materials Section, the absolute length of fragment is not important; rather,
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what counts is the number of domains per fragment. From Eq. 1, one can show
that this number is low at the beginning and end of S phase and reaches a
maximum in the middle of S phase. Thus, while a minimal requirement for a
successful experiment is that there exist a reasonable range of f values where
the typical DNA fragment has many (say 10) domains, any experiment will
have problems at the beginning (f — 0), where the average hole size on the
original, unbroken chromosome will eventually exceed the average fragment
size and the end (f — 1), where the average eye size will eventually exceed
the average fragment size.

The simplest way to deal with this problem is to simply ignore all DNA frag-
ments that have fewer than some minimal number (say 5) of domains. While
such a rule of thumb keeps the uncertainty of estimated parameters bounded,
it implies that little information will be gathered about the first and last stages
of replication. In order to increase the information extracted from experiments
in those regimes, one can do a more sophisticated analysis [25]. This analysis
begins by recognizing that there are three classes of domains (either holes or
eyes): interior, exterior, and over-sized (Fig. 3). Up to now, we have implicitly
assumed that all domains were interior domains. An interior eye, for example,
is one that is flanked by two hole domains, allowing its size to be measured
unambiguously. An edge-eye domain is bounded on one side by a hole domain
and on the other by the edge of the molecule. Thus, one cannot know the true
size of the eye domain as it existed on the original, unbroken chromosome. The
worst case is that of an oversized domain, where the domain extends beyond
both edges of the DNA fragment, Fig. 3(b). One can picture the situation as
one where an initial distribution of, say, eye sizes is subdivided into three ex-
perimental distributions of interior, edge, and oversized domain lengths. The
problem, then, is that the naive estimator of average eye size,

ginterior = N )
interior

a7 L'm erior
t (15)

(the total length of interior domains divided by their total number) is biased.
Intuitively, it must always be smaller than the true value because some large
domains will show up as edge or oversized domains. Because of the direct role
of average domain sizes in our analysis, any bias in those quantities will bias
the inferred initiation and fork rates.

If the population is well-synchronized, one can show that it is possible to
construct an unbiased estimator of the average domain size,

E Ltotal Linterior + Ledge + Loversized
unbiased — = ’
Ntotal Ninterior + Nedge/2

(16)

where Liota = Linterior + Ledge + Loversizea 15 the total length of all fragments
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analyzed and Niotar = Ninterior + Nedge/2 i the total number of domains in the
unfragmented DNA, equal to the number of interior and half the edge frag-
ments. (The factor of 1/2 arises because each time the original DNA molecule
breaks, two edge domains are produced. Note that oversized domains do not
contribute). In practice, an experiment will likely show effects from finite frag-
ment sizes and asynchrony. This poses a problem for the previous analysis, as
it is no longer possible to determine which f value to assign a given oversized
fragment. Still, one can show that the obvious work-around — simply to omit
Loyersizeq from Eq. 16 — reduces the bias of the naive estimator f;,ierior for
domain size by including information about the edge domains [25]. For more
accurate results, then, one should use this “interior-edge” estimator.

4.3  Finite Genome Length

So far, we have implicitly assumed that the total length of the genome is
infinite. This is apparent in the expression for f(t), where, for example, Eq. 3
implies that f — 1 as t — oo, meaning that it takes an infinite amount of
time to complete S phase (f = 1). But obviously, a finite genome replicates in
a finite time.

For most practical measurements, the genome is so large that the differences
between the infinite-genome approximation and the finite-genome result are
very small. For example, if one calculates the time to go from 5 to 95% repli-
cated (i.e., from f = 0.05 to 0.95), the infinite-genome result will not be
measurably different. However, in certain cases, it is important to be able to
calculate the exact duration of S phase (i.e., from f = 0 to 1). For example, in
Xenopus embryos before the mid-blastula transition, the duration of S phase
is about 20 min. while the entire cell cycle is only 25 min. [26]. For such a case,
it can be interesting to be able to infer the duration of S phase indirectly from
measurements throughout the synthesis phase. Here, we summarize results
from a recent theoretical study of this case [10].

In a finite genome, the stochasticity (randomness) of initiation will imply
that the duration of S phase is also a stochastic variable and will thus have an
“end-time” distribution pe,q(t). The mean of this distribution gives the average
time to replicate the entire genome. Its standard deviation gives the typical
variation in this time, which can be taken as a measure of the “reliability” of
the replication process and the need for checkpoint mechanisms to compensate.
For example, in the example of Xenopus embryos given above, the reliability
must be high — and o correspondingly small — in order for replication to be
complete before the end of the cell cycle. If replication is not complete by the
end of mitosis, “mitotic catastrophe” ensues [10].
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Using methods of extreme-value statistics, one can show that pe,q(t) is ap-
proximately a Gumbel distribution, exp(—x) exp(—e~*), where x = (t —t*)/
is a dimensionless variable [27]. The location parameter t* gives the mode
of the distribution, and the scale parameter (3 gives the width. The mean
tawg = t* 4 B7, with v = 0.57721 ... the Euler-Mascheroni constant. The
standard deviation o = (7/v/3) 8 ~ 1.2825 .

The next step is to determine t* and (3 in terms of the fork velocity v, initiation
rate I(t), and chromosome length L. The mode ¢* is determined via an implicit
transcendental equation [10],

L(t*) exp [—21} / g(t’)dt’] ~1, (17)

where g(t) = [¢ I(t')dt’ has units of (1/length) since I(t) is the number of initi-
ations per time per length. One can solve Eq. 17 numerically using a standard

one-dimensional nonlinear equation solver, such as FindRoots in IgorPro, to
find t*. The width of the end-time distribution is given by 5 = 2vg(t*).

4.4 Combined analysis

Finally, we present the results of an analysis of simulated data that includes all
of the issues discussed above (Fig. 2)(d)—(h). The simulations are done using
the same parameter values as used in (a)—(c). The difference is that now there
is a population of 100 cells, whose replication starting time is drawn from a
Gaussian distribution. We sample 13 times from each cell, with each fragment
1 Mb long. In (d), we present the average domain size as a function of f. These
are directly measured from the data. In (e), we present f as a function of 2vt,
with v the (so-far unknown) fork velocity. The calculation is done using Eq. 13.
Similarly, we estimate the quantity 7/2v vs. 2ut using Eq. 12. At this point,
v is still unknown, but we can step through a set of possible values. For each,
we sum the squares of the deviations between the measured and predicted
values (via Eq. 14) of each bin of the p(f, ;) histograms, which gives us the x?
statistic [23]. Because we calculate a single x? statistic by summing over all
the p(f,t;) histograms, this is a global fit. The minimum value of x?(v), 0.596
+ 0.039 kb/min, is consistent with the 0.6 kb/min used in the simulations.
Given a velocity, one can then work out the starting-time distribution ¢(t),
shown here in Fig. 2(h). From that, one can calculate f(t) and /(¢). The new
axes (just rescalings of 2vt) are shown as top and right axes in Fig. 2(e,f). We
conclude that reasonable inferences about the fork velocity, initiation rate, and
related quantities can be made even in the presence of “real-life” experimental
issues.
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Fig. 2. Parameter extraction from almost ideal and more realistic simulated data
sets. In all cases, the thick solid lines correspond to the parameters actually used in
simulating the data — they are not fits. The parameters (I(t) = I,t" /min/kb, with
I, = 1.38e-5, n = 2.45, and v = 0.6 kb/min) were chosen to correspond to those
found for Xenopus cell-free embryo extracts [3]. Errors are estimated by compiling
statistics from repeated simulations. (a)—(c) Analysis of an almost ideal data set of
length 100 Mb, chopped into fragments 1 Mb long, with 13 time points taken at
intervals of 3 min. Data are perfectly synchronous. (a) Average eye and hole domain
sizes vs. time. (b) Replicated fraction vs. time. (c¢) Inferred initiation rate vs. time.
(d)-(h) Analysis of a more realistic data set also consisting of 13 time points where
100 samples, each 1 Mb long, are taken from a population of 100 cells. The starting
times of replication of the 100 cells are drawn from a Gaussian distribution with a
standard deviation of 6.1 min. Otherwise, the same parameters are used as above.
(d) Average eye and hole domain sizes vs. replication fraction f. (e) Replication
fraction f vs. 2vt (bottom axis). After v is determined, the 2vt axis may be rescaled
in terms of ¢ alone (top axis). (f) Scaled origin initiation rate I/2v vs 2vt. Again,
after determining v, one can rescale axes in terms of I vs. ¢ (right and top axes).
(g) The minimum value of the x? statistic gives the fork velocity. (h) Starting-time
distribution ¢(7).

20



Eye (i) Hole (h)

(a) o o o I I 0 0 ¢
(b) Oversized

I
(C) Interior Edge

Fig. 3. Sketch of the three types of eye domains. (a) Portion of a very long DNA frag-
ment showing eye and hole domains. (b) Short fragment consisting of an oversized
eye domain. (¢) Longer fragment with interior and edge eye domains indicated.
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