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Communication e�ectiveness Teaching Dimension (TD)

Optimal cooperative inference

De�nitions

a concept in concept space

a data set in data space

the learner's posterior for a 
concept given a data set

the teacher's probability of 
selecting a data set for com-
municating a given concept

Transmission index measures the 
e�ectiveness of communication— 
on average, how well a concept can 
be communicated through data.

For square matrices, Transmission 
Index = 1 i� the learner’s inference 
and the teacher’s selection matrices 
are the same permutation matrix. 

Learning through cooperation is a foundational principle 
underlying human-human (e.g., language, cultural evolution, 
education), human-machine (e.g., cooperative RL, social robotics, 
Bayesian teaching), and machine-machine (e.g., machine teaching) 
interaction.

Just as training error provides a framework for selecting models 
that generalize well, our Cooperative Index provides a framework 
for selecting models that can be explained well through data.

What are the implications of cooperation on representation?

Examples

Concept: boundary location 
Data set:  o’s and x’s. 

Concept: order of polynomial
Data set: x, y pairs

Set upIntroduction

For discrete concept and data space,

    (learner’s inference matrix) 

     (teacher’s selection matrix)

De�ne the Transmission Index:

Concept: maps x to y.
h is consistent with D i�: 
D is a teaching set for h if h, but no other concept, is consistent with D.
Example: given consistency probability matrix (M)

Average Teaching Dimension [1]:

ATD is �nite i� the Transmission Index of M = 1, i.e., M is a permutation matrix.

Expected Teaching Dimension:

ETD is a generalization of ATD from deterministic to probabilistic setting.

For h1, no teaching set —> 
For h2, teaching set is D2 : 

Cooperative inference: teacher's selection of 
data depends on what the learner is likely to 
infer and vice versa.

These coupled equations can be solved by 
�xed point iteration [2]. Machine teaching 
and Bayesian teaching are special cases 
(single iteration) of cooperative inference. 

If the spaces are discrete and the priors are 
uniform, this iteration is the same as 
Sinkhorn’s algorithm [3].

Representation theorem for optimal cooperative inference:

Let M be a nonnegative square matrix with at least one 
positive diagonal, then the following statements are 
equivalent:

(a) The cooperative index is optimal, i.e., CI(M) = 1;

(b) M has exactly one positive diagonal (an application of 
Sinkhorn’s theorem [3]);

(c) M is a permutation of an upper-triangular matrix.

Examples:

      TI = 0.29; CI = 1

Sinkhorn’s algorithm: starting with an 
initial likelihood matrix,

repeat column normalization (1a) followed 
by row normalization (1b). 

If the iteration converges, de�ne the 
Cooperative Index

where the arguments to TI are the learner’s 
inference and teacher’s selection matrices 
at convergence.

(1a)

(1b)

• Introduced the Transmission and Cooperative Indices as metrics for the 
e�ectiveness of inference in standard and cooperative learning settings.

• Connected the Transmission Index with Teaching Dimension.

• Proved a representation theorem stating the conditions under which 
cooperation can yield optimally e�ective inference.
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Likelihoods

Concept:   h1= linear �t  h2 = quadratic �t

Data set:   D1       D2 

Given (a, Δ), construct M: MAP 
with q-Gaussian likelihoods

Di�erent likelihoods good at transmitting information in di�erent 
regimes of signal to noise ratio.

An application to likelihood choice
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