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21st century online shopping

thl dOh“ke ' Would you like to buy #
> PonNe” this phone’?

Customer FAmazGoog




Problem

Active learning:
e Goal: figure out customers’ preterences

 Way: test user’s preference on items that the algorithm is
uncertain how the user will like

 Problem: may show too many disliked items and hence drive
customers away.

Recommender system:
e Goal: recommend items that customers will buy

 Way: recommend items similar to those that are known to be
iked

e Problem: create “filter bubbles” that limit the customers to see
only a restricted set of items.

Figuring out preferences vs. Recommending likable items



Exploration-exploitation tradeoft

Should | stick to what | know to be

OK, or should | risk trying something
new to see if it is better?

Customer FAmazGoog



Cognitive science + Human-algorithm interaction

Specific Q: Is there a way to overcome the trade-off”
General Q: given an algorithm, can we predict what the
interaction will be like?

Human-algorithm interaction research (e.g., Pariser 2011, Baeza-Yates 2016):
* Dig data approach (e.qg., collaborative filtering)
e uncontrolled decision factors

COgSCi research (e.g., Bruner et al 1956, Shepard et al 1961).
e controlled decision factors
 traditionally no interaction with algorithms

CogSci + Human-algorithm interaction:
 human-algorithm interaction with controlled decision factors
e« compare idealized responses with actual human responses
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Active recommendation
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EXperiment

Stimuli 1. Training phase:
e train subject to associate labels (Beat
Dislike  Like or Sonic) with stimuli
Beat Sonic * phase done when gets 19 out of the
last 20 trials correct

A ; 2. Interaction phase:

(N » instruct subject the preferred stimuli
* naive algorithm chooses stimuli;

* subject labels like/dislike;

e algorithm updates setting

- e 20 trials

- 3. Check phase:
diameter orientation  subject labels 20 stimuli sampled
from a grid

radius size

Markant & Gureckis 2014



Conditions & subjects

6 Iinteraction conditions:
» random, a=0.5 (active), a=1 (recommend)
» a=0.55, a=0.75, a=0.95 (active recommend)

30 subjects per condition

Omit subject if check score < 18/20
» ~ 4 subjects omitted per condition

Consistency score: the fraction of the subject’s responses Iin

the interaction phase that matched the expected responses

from the predefined boundary

» Flip subjects like/dislike response it consistency score <
50%

» ~ 3 subjects’ responses tlipped per condition



Results

Recommendation accuracy = the fraction of likes in the interaction phase.
Prediction accuracy = the fraction of correct model predictions, w.r.t. the
true boundary, on 100 stimuli sampled from a grid in the feature space.
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Active recommendation overcomes the tradeoff!



The distribution of interaction examples
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Conditions

Active recommendation selects uncertain example
within the relevant category.



Active recommendation
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The effect of human variability
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It look at only fully consistent subjects —> see strict ordering.
Noisy response close to the boundary —> imperfect prediction accuracy.



Active recommendation
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Conclusions

Studied human-algorithm interaction as a cognitive
concept learning experiment.

Formalized a unification for recommendation and active
learning.

Challenge the explore-or-exploit dichotomy.
Showed a case when the tradeoff doesn'’t really exist.

Active recommendation can overcome the tradeoff by
selecting uncertain example within the relevant category.
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IThe core 1Idea

Active recommendation bypasses the tradeott if the model
captures the global and local structure.



