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21st century online shopping

FAmazGoogCustomer

Would you like to buy  
this phone?

I do like  
this phone!



Problem
Active learning:  

• Goal: figure out customers’ preferences 
• Way: test user’s preference on items that the algorithm is 

uncertain how the user will like 
• Problem: may show too many disliked items and hence drive 

customers away. 

Recommender system: 
• Goal: recommend items that customers will buy 
• Way: recommend items similar to those that are known to be 

liked  
• Problem: create “filter bubbles” that limit the customers to see 

only a restricted set of items. 

Figuring out preferences vs. Recommending likable items



Exploration-exploitation tradeoff

FAmazGoogCustomer

Should I stick to what I know to be 
OK, or should I risk trying something 

new to see if it is better?



Cognitive science + Human-algorithm interaction

Specific Q: is there a way to overcome the trade-off? 
General Q: given an algorithm, can we predict what the 
interaction will be like? 

Human-algorithm interaction research (e.g., Pariser 2011, Baeza-Yates 2016):  
• big data approach (e.g., collaborative filtering) 
• uncontrolled decision factors 

CogSci research (e.g., Bruner et al 1956, Shepard et al 1961):  
• controlled decision factors 
• traditionally no interaction with algorithms 

CogSci + Human-algorithm interaction:  
• human-algorithm interaction with controlled decision factors 
• compare idealized responses with actual human responses



The framework
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xrec = argmaxx⇤P (y = 1|x⇤, D)

xact = argminx⇤ |0.5� P (y = 1|x⇤, D)|
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Active recommendation
xact = argminx⇤ |0.5� P (y = 1|x⇤, D)|

Recommendation accuracy
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Experiment
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Stimuli 1. Training phase: 
• train subject to associate labels (Beat 

or Sonic) with stimuli 
• phase done when gets 19 out of the 

last 20 trials correct 
2. Interaction phase: 

• instruct subject the preferred stimuli 
• naive algorithm chooses stimuli;  
• subject labels like/dislike;  
• algorithm updates setting 
• 20 trials 

3. Check phase: 
• subject labels 20 stimuli sampled 

from a grid

Beat Sonic
LikeDislike

Markant & Gureckis 2014



Conditions & subjects
• 6 interaction conditions: 
‣ random, α=0.5 (active), α=1 (recommend) 
‣ α=0.55, α=0.75, α=0.95 (active recommend) 

• 30 subjects per condition 

• Omit subject if check score < 18/20 
‣ ~ 4 subjects omitted per condition 

• Consistency score: the fraction of the subject’s responses in 
the interaction phase that matched the expected responses 
from the predefined boundary 
‣ Flip subjects like/dislike response if consistency score < 

50% 
‣ ~ 3 subjects’ responses flipped per condition



Results
Recommendation accuracy = the fraction of likes in the interaction phase.
Prediction accuracy = the fraction of correct model predictions, w.r.t. the 
true boundary, on 100 stimuli sampled from a grid in the feature space.

Active recommendation overcomes the tradeoff!



The distribution of interaction examples

Active recommendation selects uncertain example  
within the relevant category.



Active recommendation
xact = argminx⇤ |0.5� P (y = 1|x⇤, D)|

Recommendation accuracy
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The effect of human variability

If look at only fully consistent subjects —> see strict ordering. 
Noisy response close to the boundary —> imperfect prediction accuracy.

Fully consistentHumanly consistent



Active recommendation
xact = argminx⇤ |0.5� P (y = 1|x⇤, D)|
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α = 0.95



Conclusions
• Studied human-algorithm interaction as a cognitive 

concept learning experiment. 

• Formalized a unification for recommendation and active 
learning. 

• Challenge the explore-or-exploit dichotomy. 

• Showed a case when the tradeoff doesn’t really exist. 

• Active recommendation can overcome the tradeoff by 
selecting uncertain example within the relevant category.
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The core idea

Active recommendation bypasses the tradeoff if the model 
captures the global and local structure.


