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The problem of Explainable Arti�cial Intelligence

Challenges Related Work

Bayesian Teaching

Empirical Support

Extend to more expressive models, such as deep probabilistic models and 
probabilistic programming. This is hard because inference is still hard.

Give more expressive explanation by giving multiple examples from large 
datasets conditioned on substructures of expressive models. The sampling of 
Bayesian teaching is hard because the number of subsets that can be chosen ex-
plodes combinatorially and the sampling landscape is highly multi-modal.

Design and implement an intuitive user interphase that supports di�erent 
types of data and interactions to help user explore the model.

Test whether an XAI framework can help user (DARPA XAI BAA, 2016): 1) pre-
dict the model’s predictions, 2) understand why the model makes predictions 
the way they do, 3) understand when the model would fail, 4) develop trust 
toward the model, and 5) know how to correct the model.  

Pedagogical reasoning (Shafto & Goodman 2008; Shafto et al. 2014): al-
ternately iterate Bayesian learning and teaching until convergence.

Machine teaching (Zhu 2013, 2015): an optimization framework for �nd-
ing the subset of data that makes the learning model’s induced inference 
closest to the target model.

Coreset (Feldman 2010; Bachem et al. 2017): a computational geometry 
framework for �nding subsets of data that make the induced inference 
close enough to the target model.

Algorithmic teaching (Zilles et al. 2008; Doliwa et al. 2014): teaching set 
and teaching dimension in deterministic cooperative setting.

Inverse reinforcement learning applied to education (Libby et al. 2016; 
Ra�erty et al. 2016): guided inquiry, personalization, strategy planning.

Why did the model predict this as a ri�e?
Why did it not predict this as other things?

Why is my loan declined?

Warning: 
ethnicity, 
belief

Mnn....

EU regulations on algorithmic decision-making and a "right 
to explanation" (Goodman & Flaxman, 2016).

Can I sign my name o� this autonomous vehicle 
and aircraft for operation Z?

Popular approaches (XAI with more AI):

Use interpretable models to explain opaque 
models: visualization, shallow model, logic 
model, tree model, causal model, etc.

Explain with interpretable modality: attention 
map, text generation.

The Bayesian teaching approach:

Explanation as the inverse of model learning.

A model-agnostic system that samples data 
subsets to explain model inferences to a 
domain (but not necessary technical) expert.

Use data, the natural common language be-
tween users and models, to explain the mod-
el’s inferences.

Supervised learning
x examples and labels
Θ parameters, boundaries

Unsupervised learning
x examples
Θ latent structures

Reinforcement learning
x actions, observations, rewards
Θ learned policy & world model

Deep learning
x training examples
Θ network weights
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4 Experiments
Di�erent types of visual experience were collected by wear-
ing a head mounted camera (NET CMOS iCube USB 3.0;
54.9o X 37.0o FOV) which sent an outgoing video feed to a
laptop. Videos were recorded as observers walked around dif-
ferent types of environments for variable amounts of time (a
nature preserve, inside a house, down-town in a city, around
a University, etc). Subsequently, every 500th frame of the
videos was taken as a representative sample of a given video
and sample images were sorted into purely natural, outdoor
scenes (no man-made structure) or scenes from indoor expe-
rience.
To derive a target distribution (means and covariance ma-

trices of subcategories), we applied expectationmaximization
[EM; 30] to the orientation data from each setting (see Fig-
ure 1). EM found two categories for both indoor and outdoor
images. Although each image comprises information about
the amplitude of structure at specific orientations, there were
qualitative visual implications of the choice o�mages used
for teaching (see Figure 2).
The target visual topic model for LDA taken from the LDA

sampler state,Φ, at the1000th iteration of Gibbs sampling.
The number of topics was set to 2 to match the number of
categories in the IGMM target model. The parameters,α and
β, were set to maximize the probability of the images under
two topics.

4.1 General Methods
To determine if our teaching model better conveyed the envi-
ronmental data to humans we ran a series of psychophysical
categorization tasks. If the teaching model captures cogni-
tively natural aspects of the selection of evidence for learn-
ing, then we would expect this group to perform better than
those provided examples that capture the center (mean) of the
category distribution. Rather than have subjects categorize
all possible images from the distribution, we focused on im-
ages that should be difficult to categorize – ambiguous im-
ages that lie somewhere between the two categories. We
compared categorization of ambiguous images based on ei-
ther one of the three best teaching pairs or one of the three
image pairs that captured the central tendency of each inner
category (the mean for Experiment 1; or most likely under
the model in Experiment 2). By using multiple pairs o�m-
ages for comparison, we sought to eliminate any e�ects of
idiosyncratic semantic content (i.e. filing cabinets) in indi-
vidual images. Participants were recruited through Amazon
Mechanical Turk and paid for completing the task. Using a

Figure 2: Examples of di�erent exemplar pairs used in the
categorization experiment for subject reference. The top row
shows images used for outdoor scenes and the bottom row
shows images used for indoor scenes. The left column shows
the images that best capture the mean of the inner category
distributions while the right column shows the example pairs
picked by the model to teach the category.

4.2 Experiment 1
Experiment 1 focused on distinguishing indoor and outdoor
scene types and determining if the teaching model provided
better examples than images closest to the mean for each cat-
egory. The ambiguous images in this experiment were cho-
sen by calculating the Euclidean distance in orientation space
each image lay from each inner category mean. The summed
di�erence from each mean was then compared to the distance
between the category means and the middle third o�mages
closest to this value were labeled ‘ambiguous’. A total of ap-
proximately 60 subjects were run in each of the 12 possible
conditions (357 total). In order to minimize learning e�ects,
the first four trials for trials were considered training and all
results are based on performance on the last 18 images.

4.3 Results
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IDS is di�erent from adult-directed speech and is 
consistent with what Bayesian teaching would 
produce to teach adult phonetic categories 
(Eaves et al. 2016).

Teaching examples help people learn the catego-
ries extracted by the unsupervised model better 
than examples that convey just the category 
means (Schweinhart et al. 2016). 

The best examples are better than random exam-
ples at helping people learn the supervised model’s 
predictions. They also span category-irrelevant di-
versity and avoid highly atypical examples.


