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How is the Self-Teaching model different from the 
most common model of active learning objective

—optimizing for expected information gain?

Does the Self-Teaching model capture 
human’s active learning behavior?



• Meta-reasons about oneself 
as the teacher • Reasons about the world
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Self-Teaching Expected information gain

PT (x) =
X

g2H

X

y2Y

PL(g|x, y)PT (x, y)

Z(g)
PL(g)

<latexit sha1_base64="cqcFkR/GCh4kNstgZEF+ICCQVjI="></latexit>

• Uses only the rules of 
probability

• Also uses entropy and 
subtraction

• Hypothesis testing for 
distinctive hypothesis • Overall uncertainty reduction



Self-teaching: confirming distinctive h

A distinctive hypothesis is 
one that is on average less 

likely to be inferred  
if all interventions and 

observations are equally 
likely to occur.
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Boundary game
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(a) Three features (b) Eight features

Figure 4 . Probability of selecting each feature for the boundary task with three
and eight features. The horizontal axes represent the feature position along the line for
each concept. The vertical axis represents the probability of selecting each feature. The
predictions of the Self-Teaching model are shown in blue, while the EIG model is in red.
Both the EIG and Self-Teaching models favor the selection of features in the middle for the
boundary task for both three and eight features.

To further support the conclusion that the Self-Teaching model accords with the be-
havior of the EIG model, we consider predictions on a related, but di�erent concept learning
task. Results for the line task are shown in Figure 6, where we considered hypothesis spaces
that again consisted of either three or eight features. The results from these two simula-
tions show di�erent, yet interesting patterns of predictions that are qualitatively di�erent
from the boundary task. First, in the three feature case as shown in Figure 6(a), both the
Self-Teaching and EIG models show a preference for the features on the ends, rather than
in the center like the boundary task results in Figure 4. This suggests that Self-Teaching
and EIG exhibit a similar sensitivity to the set of hypotheses and assign similar values to
the features. Indeed, examination of the probabilities of selecting each feature in a line task
with eight features in Figure 6(b) reveals interesting di�erences compared to the boundary
task with eight features in Figure 4(b). Here, we find that the EIG model peaks in two
points away from the center, suggesting selecting the features at those points would provide
more information than the center. Similarly, we also see that Self-Teaching predicts the
same qualitative behavior with two peaks.

So far, our results show that the qualitative behavior of Self-Teaching matches the
EIG model in two di�erent concept learning tasks. However, is this always the case? Or
are there situations where the predictions of the Self-Teaching model di�er from the EIG
model?

To explore this possibility, we also compared the EIG and Self-Teaching models in a
causal learning setting. We examined the predictions of both models across the 27 problems
used in Coenen et al. (2015), as they provide a challenging test-bed of active learning
problems within the domain of causal learning. In particular, neither of the two models
(EIG and Positive-Test Strategy) considered in the paper alone explains the human data
particularly well, and we were interested in how the predictions of the Self-Teaching model
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(a) Boundary task (b) Line task (c) Causal learning task

Figure 3 . Examples of the three tasks to compare the expected-information-gain
and Self-Teaching models. We explore two kinds of concept learning which we call the
boundary task and the line task, which both involve concepts of varying line segments on
a one-dimensional line. In both concept learning tasks, the set of features xi refer to the
di�erent positions along the line. In the boundary game, the set of hypotheses is restricted
to lines where there is a single boundary to disambiguate between hypotheses. On the other
hand, the line task includes all possible single line concepts for a given number of features.
In the causal learning task, the hypotheses h are two di�erent causal graphs. The set of
features xi in this task refer to which node the learner chooses to intervene on.

We use the following notation for describing the concept learning tasks. First, each
hypothesis h in the concept learning task consists of a set of features X = {xi|xi = i, i =
1, . . . , n} and labels {yi|yi œ {0, 1}, i œ {1, . . . , n}}, where each feature, xi, refers to a
position along the line segment, and each label, yi, refers to whether the line segment for
a given hypothesis exists at that position or not. Thus, each hypothesis can be described
as a set of data points h = {(xi, yi)}n

i=1. For this tasks, the likelihood P (y|x, h) is given by
weak sampling, and is equal to 1 when x = xi, y = yi and 0 when x = xi, y ”= yi for a given
h.

3.1.2 Causal Learning. The third task we explore is a causal learning problem.
In this task, the learner is presented with a causal system where the connections between
the nodes are not shown, and the learner must determine which of two possible causal
graphs is the true causal graph. Each causal graph consists of three nodes and the nodes
are connected in di�erent configurations (see Figure 3(c) for one example). The learner
can choose to intervene on one of the three nodes, which will turn that particular node on,
and will also cause other nodes that are connected downstream of the intervened node to
turn on with high probability.6 Depending on the true underlying graph, intervening on

6For our simulations, the probability that an active parent node would turn on its direct descendants was
set to be 0.8, and the background rate of a node turning on spontaneously was set to be 0.0. These settings

? ? ?
task



Causal graph learning
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interventions that tend to lead to the same outcome under both hypotheses, which thus failed to dis-
criminate between them. Consider for example Problem 21, shown in the left panel of Fig. 6 : IG pre-
dicts that learners should avoid intervening on n1, which is the root of both chain graphs, because it
will probably lead to the same outcome (all nodes ON), irrespective of which hypothesis is true. Yet,
most participants chose to intervene on n1. Problem 14 (right panel in Fig. 6 ) provides another exam-
ple: In this problem, intervening on n1 will always lead to the same outcome for both hypotheses (it
has zero EIG), yet participants intervened on this node frequently. Although less pronounced than in

Fig. 5. Intervention choices and predictions of the IG model by problem type. The corners of each triangle correspond to nodes
in the causal graph that participants intervened on (see Fig. 4). White dots indicate the actual choice frequencies. Bootstrapped
samples of these choices are shown in blue (lighter color when viewed in grayscale). Samples from the IG model’s posterior are
shown in red (darker in grayscale). Where the two point clouds do not overlap (e.g. in Problems 4, 21, or 27), it is very unlikely
that the observed data could have been generated by participants adhering to IG. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

114 A. Coenen et al. / Cognitive Psychology 79 (2015) 102–133

Coenen, Rehder, & Gureckis. (2015). Strategies to intervene on causal systems are 
adaptively selected. Cognitive psychology, 79, 102-133.
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Human choices

Expected information gain
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Figure7.ThepredictionsoftheSelf-Teachingmodel(bluesquare),EIGmodel
(redcircle)andPositive-TestStrategymodel(greendiamond)forthedi�erent
causallearningproblems.Eachofthediagramsrepresentsaprobabilitysimplexover
thethreenodestointerveneupon,alongwiththetwohypothesestobeconsideredinthe
toprightofeachdiagram.Apointinthecenterofthesimplexindicatesindi�erenceto-
wardsselectinganyofthethreenodes,whilepointsthatareclosertoeachcornerrepresent
astrongerpreferenceforselectingonenodeovertheothers.Thedottedlinesindicatethe
boundariesforfavoringonefeatureovertheothertwo,partitioningthesimplexintothree
distinctsectors.Ourresultsshowthatformostofthe27problems,thepredictionsofthe
Self-TeachingmodelforwhichnodetointervenematchestheEIGmodel(seetextformore
details).However,inanumberofcases,theSelf-Teachingmodelprefersinterveningona
di�erentnode.Wecomparedthistoanothermodelofactivelearning(Positive-TestStrat-
egy)andfoundthatthismadesimilarpredictionsinthesenon-matchingcases,suggesting
thatself-teachingmimicsthebehaviorofbothmodelsunderdi�erentcircumstances.

modelslyingintwodi�erentsectors(Problems4,14,21and22).Inthelattercaseswhere
Self-Teachingprefersadi�erentfeaturethantheEIGmodel,thepredictionsofthePTS
modelalsopreferthesamefeaturethatSelf-Teachingdoes(exceptforProblem14).Apart
fromthesefewcases,weconsiderthepredictionsoftheEIGmodelandtheSelf-Teaching
modeltobematching,andfindthatthereisastrongamountofsimilaritybetweenthese
twoactivelearningmodels.

4Discussion

Peoplecanlearnfrombothactiveexplorationandfromotherpeople.Yet,researchon
activelearningandteachinghaslargelybeenconductedindependently,andtoourknowl-
edgethereexistnounifiedframeworkofthesebasiccognitivephenomena.Thesemodels
di�erintermsofboththelearningobjectiveandlearningarchitecture,makingunification
aninterestingandchallengingproblem.Wehavepresentedanintegrationbyformalizing
activelearningasself-teaching.Inourapproach,activelearningbyself-teachingdetermines
whichfeaturestoselectbyimaginingteachingoneselfandaveragingacrossallpossibleout-
comesandhypotheses.Mathematically,thiscorrespondstoaddingtwosimplemarginal-
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Conclusions

• We derived a Self-Teaching model, a novel form of active learning.


• It depends on only the rules of probability (may have implications for 
active machine learning).


• It unifies teaching and active learning under a single learning mechanism.


• It matches human’s active learning behavior in many cases.


