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Teaching

teaching active learning
strategy show strategy
Pr(x,y|h*) ———————————> x,y PL(x)

Teacher knows y and h*;

learner does not.
update

belief
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Teacher World: h* Learner
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teacher’s selection | (ZE, y‘h) x Pr (h|aj7 ’!/)PT ($7 y)

Shafto et al. 2008, 2014



Teaching (marginalize out y)

teaching strategy active learning
(y marginalized) show strategy
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update
observe beliet

consequence Y ———— Pi(h|x,y)

Teacher World: h* Learner

learner’s inference PL(h|x y) X P( |£E h)PT(ailh)PL(h)

teacher’s selection  [EERIEEIEN E Pr(z,y|h)
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Knowledgeability (marginalize out “h”)
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Pr(x) = P(x)
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World: h* Learner

learner’s belief
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Shafto, Eaves, et al. 2012



Self-teaching

self-teaching
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How is the Self-Teaching model different from the
most common model of active learning objective
—optimizing for expected information gain?



Self-Teaching

ZZPL glz, yPT(sE y)PL( )

geH yeyY

e Uses only the rules of
probability

e Meta-reasons about oneself
as the teacher

* Hypothesis testing for
distinctive hypothesis

Expected information gain

FEIG(x Z Pr(ylx)H (h|z,y)

e Also uses entropy and
subtraction

e Reasons about the world

e Qverall uncertainty reduction



Self-teaching: confirming distinctive h
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A distinctive hypothesis is
one that is on average less
likely to be inferred
if all interventions and
observations are equally
likely to occur.



Does the Self-Teaching model capture
human’s active learning behavior?
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Causal graph learning
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Coenen et al. 2015
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Expected information gain

. Self-Teaching model

. Expected information gain

Coenen, Rehder, & Gureckis. (2015). Strategies to intervene on causal systems are
adaptively selected. Cognitive psychology, 79, 102-133.



Conclusions

* We derived a Self-Teaching model, a novel form of active learning.

* |t depends on only the rules of probability (may have implications for
active machine learning).

* |t unifies teaching and active learning under a single learning mechanism.

* |t matches human’s active learning behavior in many cases.
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